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Abstract-The stability of an infinite fluid layer subject to arbitrary horizontal shear flow and to arbitrary 
vertical temperature and salinity distributions is considered. Linear stability analysis is used to investigate 
the stability under general thr~~imensional(3-D) ~~urbations. A first appro~mation Galerkin method 
is used to derive the characteristic equation; then conditions for stability are obtained and the marginal 
stability lines can be found. The method is applied in an example with a parabolic velocity distribution 
and linear temperature and salinity profiles. The stability chart in the plane of the Rayleigh numbers is 
found to include various stable and unstable regions, depending on the Reynolds number. The results 
obtained here are compared with previous results derived by a general Galerkin method. A region is found 
where the flow in stable for two-dimensional (2-D) transverse perturbations but unstable with respect to 

general 3-D disturbances. 

1. INTRODUCTION 

THE STABILITY of double diffusive flows has important 
implications in geophysical phenomena and engineer- 
ing applications, including energy conversion systems, 
and in particular the solar pond. 

The stability of a stagnant fluid layer with a vertical 
temperature distribution but not salinity effects has 
been studied by numerous investigators, cf. the sur- 
veys by Ostrach [l] and Chandrasekhar [2]. 

In most of the studies of thermal stability the ‘con- 
ventional’ Boussinesq approximation is adopted, i.e. 
the density is considered constant in the governing 
equations except for the body force term in the 
momentum equation. This term is represented by 
assuming a linear relation between the density and 
temperature. There are many cases where this assump- 
tion is not justified ; Qureshi and Gebhart [33 recently 
considered such a case and showed the effect of the 
realistic density changes. 

In treating problems of thermal or double diffusive 
stability, the steady-state solution is usually assumed 
to be known, and its stability is investigated using 
linear or non-linear approaches. The linear stability 
analysis leads, generally, to an eigenvalue problem, 
which can be expressed in a simple form, at least 
when the temperature gradient is constant. The prin- 
ciple of exchange of stabilities holds in this case, and 
instability develops in a monotonic fashion at a critical 
Rayleigh number. Veronis [4] showed that for double 
diffusive processes (with temperature and salinity 
gradients) this principle is not always valid and the 
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onset of instabilities can be associated with oscil- 
lations. Exact conditions for oscillatory instability 
were given by Pnueli and Iscovici [S]. The eigenvalue 
problem in this case has an operator which is not self- 
adjoint. Moreover, the operator in the On-Sommer- 
feld equation, which governs instabilities in horizon- 
tal shear flows, is also not self-adjoin& e.g. Orszag [6]. 

The present work considers all three effects: tem- 
perature gradients, salinity variations and horizontal 
shear flows. Magen et al. [7] summarized the relevant 
literature dealing with double diffusive stability and 
the influence of Reynolds number on the stability 
boundary. They presented a detailed discussion of the 
properties of the stability chart for double diffusive 
flows, using the governing equations only, but not 
their solutions for any particular case. The operator 
in the corresponding eigenvalue problem is evidently 
not self-adjoint, thus ruling out some more con- 
ventional methods of solution, e.g. methods utilizing 
extremum properties of the eigenvalues for self- 
adjoint operators. 

Magen et al. [8] applied the general method of ref. 
f7] to derive the stability chart of double diffusive 
shear flows in the Rayleigh numbers plane, using a 
numerical technique based on general Galerkin and 
continuation methods. 

The main disadvantage of the Galerkin method is 
the high order of approximations usually required, 
e.g. ref. [6]. On the other hand, Nield [9] pointed out 
that the first-order approximation sometimes pro- 
vides very good results. The results obtained in ref. 
[8] are accurate, but require significant computer time 
and memory, because they involve calculations of 
eigenvalues of complex high order matrices, see also 
refs. 16, lo]. Moreover, when the order, i, of the Galer- 
kin method is increased to achieve convergence and 



NOMENCLAlURE 

A, coefficients, equations (A3) 

ak coefficients of characteristic equation 

(8)) & + ick 
Bk coefficients, equations (A3) 

B,, B,,,, BR, B, stability boundaries : 

dynamic, static, for R and for Re, 
respectively 

& coefficients, equations (A3) 
D djdz 

KY coefhcients, equations (I 5) 

h,? h*, Biot numbers, equations (4) 

cj:tf unit vectors 

& stabiiity condition parameters, 
equations (9) 

L stability condition parameters, KO 

equations (12) 

13 stability condition parameter, 
equations (15) 

kh Lo axes in the abstract f,o-lao plane, 
equations (15) 

M,, Nfi elements of 3 x 3 matrices i%, N, 
equation (7) 

P pressure 
PI, P, Prandtl and Schmidt numbers, 

respectively 
Ize Reynolds number 
R A Re 
r parameter, equations (15) 

S, , S2 Rayleigh numbers for temperature and 
salinity 

T,, T2 temperature and salinity fields 

$I, rp; undisturbed temperature and salinity 

Tji complex coefficients, equations (6) 
2 time 
9 undisturbed horizontal velocity 
&, Gj, +Ci three components of the velocity field 
X, y, z Cartesian coordinates, x in the flow 

direction and z in the vertical 
direction. 

Greek symbols 
&, 8, horizontal wave numbers 

B” K f A 
&, lij parameters, equations (12) 
u, y, yO parameters dependent on /?, equations 

(A9 
P density 

;,8, 

stability parameter, equation (2) 
trial functions, equations (6). 

Superscripts 
disturbs state 

$ undistur~d state 

fx)” critical stability parameter. 

Special symbol 
(. . .) j:, . . .dz. 

betier accuracy, a new eigenvalue problem must be 
solved for every i and the rest&s of the previous 
~lculations (lower i} cannot be used. Therefore, a 
simpler method for the stability study would be 
adv~tageous, even at the cost of accuracy reduction. 

The present work uses a first-order Gale&in 
method to obtain an approximation for the stabifity 
chart and compares it with more accurate calcn- 
lations. The basic conservation equations and linear 
stability analysis lead to the characteristic equation 
for the stability parameter in the form of a third- 
order polynomial with complex coefficients. A new 
derivation is presented for the stability conditions of 
such an equation. 

The stability chart is first obtained for two-dimen- 
sional (2-D) ~rturbations in the How direction. The 
Squire transform [l I] is used, together with the 
general results of ref. [7j, in order to find the stability 
chart for arbitrary three-dimensional (3-D) dis- 
turbances. The properties of the chart in an abstract 
plane of the parameters are discussed for the most 
general case. Examples are given for the behaviour of 
the stability boundary for special cases in the plane of 
the Rayleigh numbers. 

The setting of the eigenproblem and the choice of 
the trial functions is more different in this work than 

those of ref. [S]. The results show quite good agree- 
ment with the accurate stability boundary obtained 
by ref. [S] and with other known results for simple 
cases. Furthe~ore, an unstable region is found here 
in the parametric space, where the flow is stable for 
2-D disturbances. This result was predicted in the 
general analysis of ref. [7j, but could not be verified 
by the high order Gale&m method of ref. 183 due to 
convergence problems. Magen and Patera [12] have 
recently shown, for the simpler case of a plane 
Poiseuille flow, that there may exist oblique 
unstable disturbances while both perturbations in 
the flow direction (transverse rolls) and per- 
pendicular to it ~~on~itud~nal rolls) are stable. 

ft is finally noted that the first-order formutation 
developed here cannot be extended systematically to 
higher orders. Section 6 includes a detailed discussion 
of the applicability and accuracy of the method. 

2. DERWATION OF THE CHARACTERtSTlC 

STABtLlTY EQUATION AND THE STABILITY 

CRITERIA 

Reference [7] includes a derivation of the governing 
equations for small perturbations superimposed on 
an undisturbed double di%.tsive steady flow state. The 
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velocity, pressure, density, temperature and salinity 
fields (v, p”, /?, F,, FJ are expressed as 

0 = e + v = ti(z)il+ (ui^+ ui^+ WQ ; 

p’=fi+p; p”=fi+p; $= $(z)+II;.; j = 1,2 

(1) 

where the undisturbed distributions are denoted by 
(“). Horizontal flows are considered, with the coor- 
dinate x in the flow direction and the steady state 
distributions 6 and pj are assumed to depend on the 
vertical coordinate, z, only. The perturbations, taken 
to be small, are expressed in the form 

= {V(z); Tj(z);P(z)) evW,x+#$A+~~l; 

j= 1,2 (2) 

where Q is the stability parameter and fix and fi, are 
horizontal wave numbers in the flow direction and 
perpendicular to it. 

The variables in equations (1) and (2) are introduced 
into the continuity, momentum, energy and diffusion 
equations and use is made of the equation of state in 
the form of a linear relation between the density and 
the temperature and salinity. The Boussinesq approxi- 
mation is adopted and a linear stability analysis is 
performed, whereby second-order terms are neglected 
in the governing equations. The pressure terms are 
eliminated and the variables are normalized in a 
standard way (see equation (8) in ref. [A and also 
ref. [8]), leading to the dimensionless perturbation 
equations 

(DZ-/32-iiRPjti)Tj+D?jw = aPjTj; j = 1,2 

-((D2-~2)2-iR[~(D2-~2)-DDZ~]~ 

+/Y?*(SITI -S,T,) = -a(D2-/!I*)w 1 

(3) 

where D s d/dz, /I” = /I: +/I;, R = fix Re, Re is 
the Reynolds number, based on the volumetric flow 
rate 

Q= dPdx 
I 0 

(here d(z) is the dimensional velocity); P,,* are the 
Prandtl and Schmidt numbers and S, 2 are the Rayleigh 
numbers for temperature and salinity: Pj = v/K,; 
Sj = gAT,a,d3/vKj. Here v is the kinematic viscosity, 
Kj the thermal and concentration diffusivities, g the 
acceleration of gravity, ATj the characteristic tem- 
perature and salinity differences, a, are the respective 
expansion coefficients and d is a characteristic length 
(the depth of the layer). 

It is noted that the symbols used here for the con- 
centration field, the Schmidt number and the Rayleigh 
numbers differ from those used conventionally. The 
main reason for it is convenience of presenting the 
equations and results in a more compact manner. 

The boundary conditions are given by 

w=O; D*w=O free boundary 

w=O; Dw=O solid boundary 

DTj+hu,Tj = 0 upper boundary, j = 1,2 

- DT, + h,,Tj = 0 lower boundary, j = 1,2 

(4) 

where h, and h,, are Biot numbers for temperature 
and salinity (or dimensionless heat and mass transfer 
coefficients). 

Equations (3) and (4) constitute the mathematical 
definition of the stability problem ; it is an eigenvalue 
problem, set by three ordinary differential equations 
with complex coefficients. This problem is not self- 
adjoint and the stability parameter u cannot be 
assumed real. The stability criteria, for the eigenvalue 
with the largest real part, are 

Re (a) c 0 stability; 

Re (a) = 0 marginal stability. (5) 

For given C(z), fi(z), fZ(z), the flow is stable when 
the combination of the physical parameters of the 
problem {h,,, h,,, P,, S,, Re} guarantees that condition 
(5) is satisfied for every mode (i.e. for every wave num- 
ber /I and /IX in the range 0 d /I c co, 0 < /IX ( /I). 

A first approximation Gale&in method is used here 
to derive the characteristic stability equation from the 
perturbation equations (3). Let the eigenfunctions be 
expanded in a series of a complete sequence of trial 
functions that satisfy the boundary conditions. Now 
restrict the treatment to the first elements of the series, 
i.e. 

w = w14(z) ; T, = Tj,Bj(z) (6) 

where w ,, Tj, are complex constants and the functions 
d(z), AIL satisfy boundary conditions (4). 

The Gale&in method, cf. Mikhlin [ 131, consists of 
the substitution of equations (6) into equations (3) 
and the requirement that the first of equations (3) be 
orthogonal to O,(z), the second one be orthogonal 
to e,(z) and the third be orthogonal to 4(z). These 
operations result in 

~N]{~~}=~1_1(%}~,N-~M,=O (7) 

where the elements of the (3 x 3) matrices N and M 
are defined in the Appendix. Equation (7) is the 
characteristic equation for cr. It is an algebraic 
equation of the third order with complex coefficients, 
which can be written as 

a’+a,a*+a2C7+a3 = 0 (8) 

where the coefficients aj are also listed in the 
Appendix. Stability conditions (5) require that 
the three roots of the characteristic equation (8) have 
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negative or zero real parts. These conditions lead to 
the following relations :t 

L,>O,L,>O,L,>O definite stability (9a) 

L,>O,L,>O,L,=O marginal 

1 

(9b) 
L, > 0, L, = L, = 0, L4 2 0 stability lines 

L, = L, = L3 = 0 additional 

(9c) 

(9d) 
conditions 

(see below) 

where (see also the Appendix) 

L, = b,; L, = C2(C,b,-C2)+b:b2-b,bj; 

L3 = L:L,-(L*c2+2b,LJ2 (10) 

L, = ci+4b,b3; L, = b&,b,-CJ-b:cj 

&=Re(u,); c,=Im(&; k= 1,2,3. 

It is noted that in case (9a) for definite stability all 
three roots of equation (8) have negative real parts. 
In case (9b) the equation has one root with Re (a) = 0, 
Im (a) = L,/L, and the two other roots have negative 
parts. In case (SC) the characteristic equation has two 
roots with zero real parts and imaginary parts given 
by ( -c2 f ,,/L,)/2L, and the negative real part equal 
to -L ,. In this case the additional condition L, > 0 
has to be used, which is identically satisfied in cases 
(9a) and (9b), see equations (10) for L3. Finally, in 
case (9d) all three roots have no real part. 

At this stage it is possible to extract some 
intermediate results. 

(1) The first condition in equations (9a)-(9c), 
namely L, > 0, is identically satisfied as can be seen 
from equations (10) and (Al)-(A5). It also follows 
that case (9d) is irrelevant because L, is always 
positive. This means that condition (9) reduces to 

L, > 0, L, > 0 (L4 3 0) definite stability (1 la) 

L, > 0, L, = 0 (L, > 0) marginal (1 lb) 

L2 = L3 = 0, L4 2 0 stability lines. 1 (1 lc) 

(2) Parameters L2, L, and L, are linear functions 
of Rayleigh numbers S, and S2, see equations (A5), 
(A3) and (Al). 

(3) As observed from equations (A5), L,, L, and 
L4 depend on R2 and therefore on Re2. This means 
that the stability conditions also depend on Re2. 

(4) The multipliers of R2 in equations (A5) for L2 
and L4 are non-negative (details are given by Magen 
[ 151). The importance of this observation is clarified 
below. 

Finally, L2, L, and L4 can be found from equations 
(Al), (A3) and (A5). Introduction of the results into 

t A complete procedure of obtaining equations (9), which 
are a generalization of the Routh-Hurwitz conditions for a 
complex polynomial, appear in Gantamakher [14]. Equi- 
valent conditions have been derived in a simpler form by 
Magen [ 151 for the third degree polynomial considered here. 
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FIG. 1. Static marginal stability boundaries : (a) in the L,,- 
L,, plane ; (b) in the Rayleigh number plane, S,-S2. 

equations (11) yields the stability conditions for every 
special case. 

3. MARGINAL STABILITY LINES AND 

STABILITY REGIONS 

3.1. Static stability 
For the case of no initial flow, Re = R = 0, it is 

found from equations (lo), (A4) and (AS) that the 
relevant parameters L reduce to 

L,l,=, = L,, = ~,(p)-52,ws, f522um2 

L,I,=, = L,, = ~,(p)--54,(B)s, +54*W& 

i 

(12) 

L30 = L&L,& L50 = 0 

where coefficients Sj and t,, defined in equations (A6) 
depend only on wave number 8. Stability criteria (11) 
can now be written as 

L,, > 0, L,,,, > 0 definite stability (13a) 

L,, > 0, Ldo = 0 marginal 

1 

(13b) 

L2,, = 0, L,, > 0 stability lines. (13c) 

This means that in the plane Lzo-Ldo the static stab- 
ility domain is the first quadrant and we denote it by 

ST,,,. The static instability domain (the three other 
quadrants) are denoted by UNr_,. The boundary 
between them (positive parts of the axes L,,, L,,) is 
denoted B,,,, see Fig. 1 (a). 

The marginal stability boundary B,, is now trans- 
formed to the Rayleigh number plane. The relations 
between S,-S2 and L20-L4,, are linear and they include 
the wave number, /J, cf. equations (12) and (A6). Thus, 
for a specific /?, B,,, in the plane S,-S, is also formed 
by the intersection of the two straight lines, L,, = 0 
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and LdO = 0, see Fig. l(b). However, the stability 
condition for any /I is sought. Therefore, we seek 
the envelope of the family of lines B,,, (S,, SZ, /I) 
depending on the parameter /I, i.e. 

&,(B)S, -r&&V% = &&I) 

r;,(B)S, -Gf,(B)S* = &Z(P) k = 2,4 1 

(14a) 

(14b) 

where the prime denotes differentiation with respect 
to /I. The wave number /I can be eliminated between 
equations (14) and the static stability boundary B&,, 
is thus obtained as the envelope, shown qualitatively 
in Fig. 1 (b). 

3.2. Dynamic stability 
The dynamic stability boundary for cases with 

initial flows (Re # 0), is determined from equations 
(11). This marginal stability curve (L., = 0, Lz >, 0, 
L4 > 0) depends on both wave numbers /I and /IX for 
any specific value of Re (R = Rej3.J. We are inter- 
ested, however, in the general stability margins, which 
are independent of fl and flX, i.e. the stability boundary 
for any arbitrary perturbation. The Squire trans- 
formation will now be used, whereby only 2-D dis- 
turbances in the flow direction @IX = jI) are 
considered. The marginal stability line, BM, will first 
be constructed for this case and for a specific wave 
number fl: R = fi Re. Then the results of ref. [7j will 
be applied to derive the line B3d for general 3-D 
perturbations. 

According to ref. [A, the general stability chart 
for any Re includes ‘true’ segments of the marginal 
stability curves for 2-D perturbations, where these are 
the most unstable. The ‘dummy’ parts of the curves 
(where 2-D disturbances are stable but 3-D need not 
be stable) are excluded and replaced by the envelope 
of these lines and by parts of the static stability lines. 

The line Bw is determined from equation (1 lb) as 
L3 = 0 for a specific value of R. Additional conditions 
are also imposed, namely L2 2 0 and L, > 0. It can 
be shown that the coefficients of Re* in the expressions 
for L, and L,, equations (A5), are non-negative. 
Therefore, an increase of Re will cause movement of 
the boundary lines L2 = 0, L, = 0 into the region 
UN,,,, in the plane L,,--L,,, see Fig. l(a). It seems 
as if this result indicates an increase of the stability 
domain, determined by the lines L3 = 0, L, = 0 and 
L4 = 0. According to ref. [7], however, an increase 
of Re cannot stabilize unstable states, thus the lines 
L2 = 0, L4 = 0 (Re # 0) are ‘dummy parts’. There- 
fore, instead of inequalities L2 > 0, L, > 0 one should 
use LzO > 0, L,,, > 0, and only these parts of the line 
B,, which belong to the first quadrant of the plane 
LzO-L4,, should be considered. 

The transition from B,, to B3d and the trans- 
formation to the physical plane S,-S2 are now dis- 
cussed for the special case of identical boundary con- 
ditions for temperature and salinity. 

4. THE STABILITY CHART FOR THE CASE OF 

IDENTICAL BOUNDARY CONDITIONS FOR 

TEMPERATURE AND SALINITY 

Consider the special case where the boundary con- 
ditions for the temperature and the salt concentration 
in equations (4) are identical. There is no restriction, 
however, on the initial distributions f,(z), f*(z), 
which need not be the same. We choose for this case 
identical trial functions for the temperature and salinity 
perturbations : O,(z) = O,(z) = O(z). 

In order to simplify the treatment of the equations, 
the parameters LzO, L,,, L3 and R are transformed 
using the relations 

L2ll = ~2llE203) ; L40 = l40E4W 

L3 = b%(B) ; R* = r*E,(p) I 
(15) 

I3 = (120+2r2)2(140+r2) 

-r2(Z20+140-1+2r2)2 (16) 

where coefficients E(B), defined in equations (A8), 
are all positive, and equation (16) has been obtained 
by introduction of equations (15) into equations (10) 
for L3. 

The result of the derivation in the previous section 
was that the dynamic marginal stability line, B2,,, is 
determined by the conditions l3 = 0, lzo 2 0, lgo > 0. 
The expression for l,, equation (16), does not include 
the physical parameters of the system. Therefore, it is 
more convenient to first construct the general stability 
chart in the 12o-14o plane, which is the same for all the 
different cases, and only then to transform it to the 
Rayleigh number plane S,-S2, using equations (12) 
and (15). 

Section 4.1 and Figs. 2 and 3 include a detailed 
derivation of the stability chart in the former plane 
and a discussion of its properties. The marginal stab- 
ility lines, BZdr are first constructed for various values 
of R (or r). Then the envelope, Bd, of the family of 
these lines is found (the line Bd is the stability bound- 
ary for all values of Re). Finally, margins B3,, are 
obtained, which determine the stability for specific 
values of Re. 

4.1. Construction of the stability boundary in the 
abstract plane 120-140 

The marginal stability line B&l3 = 0) for a specific 
wave number /I, is obtained in the plane 12o-Z4o from 
equation (16) as 

I,, = fr[J(~,o+r2)Tr-1/(J(140+r2)Tr)l. 

(17) 

As indicated in the previous sections, the static stab- 
ility region, ST,,, is the first quadrant in the plane 
12o-l4o (or L,,-L,,). Stable flows cannot correspond 
to points outside of this quadrant and those parts of 
BZd, equation (17), not belonging to it are ‘dummy’ 
parts. 

Different marginal stability curves correspond to 
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Fro. 2. Dynamic marginal stability boundaries B,, for various values of r (or R) in the 140-120 plane. 

FIG. 3. Dynamic marginal stability boundaries B,, for various Reynolds numbers and their envelope Bd 
in the 14O-12O plane. 

different values of r, dM in equations (15), as 
shown in Fig. 2. When r < l/2 the boundary Bu con- 
tains two branches of the line I3 = 0 (equation (17)), 
e.g. DC and BH for r = rz. As r + 0 the right-hand 
branch of line (17) approaches the positive I,, axis 
from point A in Fig. 2, while the left-hand branch 
tends to merge with the broken line QOA on both 
axes ; thus the ata& stability boundary is recon- 
structed for r = 0 (and R = 0). 

In the limiting case r = l/2, the left-hand branch of 

equation (17) passes through the origin and does not 
contribute to the stability boundary, which consists 
of the positive ZrO axis, the part 0 < id0 < 2 on the 
ldO axis and the right-branch of equation (17) (for 
r = r4 = l/2), see Fig. 2. 

When r > l/2 line BZd has only one branch in the 
first quadrant, e.g. GE for r = rs in Fig. 2. 

The stability region for a specific value of r N Re 
lies above the line BZd for this r. Now consider the 
region S in Fig. 2. The mathematical treatment for 
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2-D disturbances yields the conclusion that this region 
is stable for rs and unstable for r4, with r4 < r5. 
According to the genera1 results of ref. [7] (see also 
ref. [12]), any point in this region is unstable for r5 
with respect to genera1 3-D perturbations but stable 
for 2-D disturbances both in the flow direction (trans- 
verse rolls) and perpendicular to it (longitudinal 
rolls). It then follows that part GG’ of B2,, (for r = rJ 
is a ‘dummy’ part. In order to separate the ‘dummy’ 
and ‘true’ parts of Bzd, and to derive the stability 
margin B,, for a specific Reynolds number and 3-D 
disturbances, we proceed by constructing the 
envelope, Bd, of the family of lines BZd with r as a 
parameter. It is obtained from equations (16) and (17) 
by the formal requirements 

13(lZ0, I,,, r) = 0 ; 2 = 0 

leading to the envelope equation, Bd 

(18) 

l,, = (,/14,, + 1)*/2 envelope, Bd. 

The value of r on the envelope is given by 

(19) 

r2 = T lzO Jld0/2 = T JM Jb f 1j2/4. (20) 

The marginal stability curve Bd, equation (19) is a 
parabola in the plane 12&,, e.g. the line DBCAGI in 
Fig. 3. Branch IHG is meaningless because r* on it is 
negative (see equation (20)). Therefore, the con- 
tinuation of the marginal stability curve is the positive 
lzo axis, i.e. GW. The region above the line Bd is 
stable for any value of Re and for any general 3-D 
disturbance and is denoted ST,. 

It can be seen from equation (20) that the parameter 
r has a maximum on the envelope (point L in Fig. 3) 

dr2 
a = 0 + r, = l/27. 

As we move along the line Bd, from point D to 
point A, r decreases to zero ; then from A to L r 
increases to the value rC and from L to G r decreases, 
again, to zero. As mentioned above, r2 becomes nega- 
tive as we continue to move along Bd towards points 
HandI. 

For a value of r lower than r,, say r ,, the marginal 
stability line BZd has two branches RFKEP and MCU, 
touching the envelope Bd at three points F, E and C. 
When r > r, the line BZd is tangent to Bd at a single 
point, e.g. point B of branch NBV for r5. 

From the stability chart in Fig. 3 and from the results 
of ref. [7] it can be seen that the segments of the lines 
BZd lying between the envelope, B,,, and the axes 120, 
l,, are ‘dummy’ parts, e.g. parts RF, EP and MC for 
r = r,, and NB for r = r5. It is interesting to follow 
now a complete path of a marginal stability line, B,,, 
for a specific value of Re, say Re,, which corresponds 
to r, (Fig. 3). According to the construction procedure 
already described, the line consists, first, of the ‘true’ 
parts of the stability boundary, Btd, for 2-D per- 
turbations, i.e. segments where these are the most 

dangerous, or easiest to excite. The line B,, continues 
on the envelope or the 12,, axis from the point where 
the line B3,, (for Re,) is tangent to these lines. 

Thus BSd (Fig. 3) includes the ‘true’ part UC, then 
the segment CAE on the envelope Bd, the ‘true’ seg- 
ment EKF, another part - FG, of the envelope, and, 
finally, the segment GW on the lzo axis, which is a 
part of the static stability line. 

The results of this section based on the genera1 
results of ref. [7], can be summarized now for the 
stability chart for general 3-D perturbations. 

The whole plane 12& is divided into four different 
parts for any specific wave number /3 (Fig. 3). 

(1) Unstable region UNrc,, : the whole plane except 
for the first quadrant. In this region all points are 
unstable for all values of Re. 

(2) Stable region ST, : above the line Bd ; in this 
region all points are stable for all values of Re. 

(3) Dynamic stability region ST, for r N Re : this 
region is the domain between lines CD and CU and 
the area FKELF, when it exists (i.e. for r, c r,). In 
this region all points are stable for Re < Re ,. 

(4) Dynamic unstable region ST,,, for r _ Re : the 
area QACU and the part AOGFKEA for r, c r, (or 
the whole area GAO, for r, > r,). In this region all 
points are unstable for Re > Re , 

This concludes the derivation of the stability chart 
in the abstract 12&, plane and the discussion of its 
properties. As mentioned above, the chart for a spec- 
ific value of wave number p, is general and does not 
depend on the physical parameters of the problem 
(for the case of identical boundary conditions for 
temperature and salinity). The construction of the gen- 
eral stability chart in the S,-S2 plane (independent of 
wave number /I) by transformation from the 120-140 
plane is described in Section 4.2. The straight lines HJ 
and JI in Fig. 3 represent the axes S, = 0 and S2 = 0. 
They are obtained from equations (12) and (15) in the 
form 

S, = 0 * ~20542lE2 = M22lE4 +62542 -6d22 

S2 = O*~20541/E2 = 1,,52,lE4+625,,-6,52,. 

(22) 

Envelope Bd is tangent, by construction, to all the 
lines Bzd, and is also tangent to the four straight lines 
120 = 0,140 = 0, s, = 0, s2 = 0. 

4.2. The stability chart in the Rayleigh number plane 

SI--s2 

Relationships (12) and (15) between 12,,, 14,, and S,, 
S2 are used to transform the marginal stability curves 
from the abstract lZ,&, plane to the physical Ray- 
leigh number plane S,-S2. The expressions are linear, 
with coefficients 5, 6 and E which depend on wave 
number /I. Substitution of equations (12) and (15) 
into equations (13) and using also equations (A6) 
yield the equations of the static and dynamic marginal 
stability lines B,, and Bd (in terms of S, and S,) 
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2 I 

(24) 

where coefficients q,, q2, y and yO, defined in equations 
(A9), are independent of S,, S2, P,, P, and Re. y and 
y,, depend on the boundary conditions (identical, here, 
for temperature and salinity), the shape of the trial 
functions 4(z) and 0(z) and wave number /I. 1, and 
q2 depend only on c#J,~ and the initial (undisturbed) 
distributions fj. Bd does not depend on & because it 
is the envelope of the family of marginal stability lines 
with Re as a parameter. 

We seek now the general stability boundary for any 
arbitrary perturbation, i.e. the envelope of the family 
of the marginal stability lines with /I as a parameter. 

As mentioned above, q, and qz do not depend on 
/I. Therefore, part (b) of the static stability margin 
B rest9 equations (23), is a straight line with a slope 
which is not a function of /I. The envelope of these 
lines, B$,, (b), is the straight line, with the same slope 
and for a critical value, /I*, of the wave number (Fig. 
1 (b)) This result has also been obtained by Nield [ 161. 

The second part of B,,,, equations (23), moves and 
rotates when p varies. The envelope of these lines is 
also shown in Fig. l(b), and the marginal static 
stability line, B&,, is the combination of these two 
envelopes, as shown in the figure. 

Part Bd (b) of the dynamic stability boundary, equa- 
tions (24), is identical to B,,, (b). Part Bd (a) is an 
upper branch of an inclined parabola. As can be seen 
from equations (23) and (24), the lines Bd and B,,, (b) 
depend on fl through y only. Therefore, the limiting 
positions of these three lines is obtained by sub- 
stitution of the minimal value of y, denoted by y*, into 
equations (23) and (24), i.e. 

Ct (b) = B,,,, @)I,+ ; &I = &ly+. (25) 

As y* is the minimum function y(B), it is found by the 
condition dy/d/I = 0. This relation and equations (A9) 
lead to the following equation for the critical wave 
number, /I* (corresponding to y*) 

2prj+84 ((D~>2>+h2~2(1)+h,~2(0) + <P#J)~) 

(@‘> (4’) 1 
_ ((De)2>+h,e2(1)+h,e2(0) ((D2612> = o 

<Q2> (4’) . 
(26) 

This equation has a single real positive root, denoted 
by /I* and y* is given by equations (A9) with 

y* = y(/?*). The line B,$,, (a) is found from equations 
(14) using equations (23) 

I 
I 

x Y-t(PI +Yo+ 
B&, (4 = 

Yb 1 
(27) 

This is a parametric representation of the line B&, (a) 
in the plane S,-S2 where y’ = dy(/12)/d/12; $, = 
dy&?*)/d/12. In the same way the line Btd can be 
found as the envelope of the family of lines BTd(jl). 

This operation requires a numerical procedure ; how- 
ever, a good upper bound approximation for the lines 
B&, (a) and BTd can be obtained by substitution of 
/I* instead of /I into equations (23), since the depen- 
dence of y0 on p is much weaker than that of y. 

A lower bound to the stability boundary Bd can 
also be found. Examination of equations (24) shows 
that the inclination angle, $, of the parabola axis is 
independent of wave number, /3. Also, since the first 
trial functions do not change their sign, thus by using 
the mean-value theorem, we obtain 

(28) 

This result for the lower bound has also been obtained 
by Bouscher et al. [17]. 

A general qualitative description of the stability 
chart in the plane Si-S2 is quite impossible, because 
of the dependence on many physical parameters and 
boundary conditions. Section 4.1 includes, however, 
a discussion of the chart in the abstract plane 120- 
/do, where the results are general and can be applied 
regardless of the values of these parameters. As men- 
tioned above, a domain in the parametric space is 
found where the flow is stable for longitudinal dis- 
turbances in the flow direction but unstable for gen- 
eral 3-D perturbations, see region S in Fig. 2. The 
results of this section and Section 4.1 are used to 
investigate the stability chart in the S,-S, plane for 
some specific examples. 

5. EXAMPLES 

The method developed here is demonstrated by its 
application to two special cases and the comparison 
of the results with known solutions. 

5.1. Linear initial distributions and ideal boundary 
conditions 

The temperature and salt concentration are 
constant on the two boundaries which are free, see 
equations (4) 
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h, = h2 = co ; Df, = Df, m 1; 3(z) E 1 

T,=T2=O; w=O; D’w=O at z=O,l. 

(29) 

In this case, the operators in equations (3) have con- 
stant coefficients and the eigenfunctions of the first 
mode are sin rrz. When these are introduced instead 
of the trial functions, the characteristic equation (8) 
is exact, and can be written as 

x [(a2+/?2)3-f12(S, -S,)] = 0. (30) 

This equation is of a third order in (o+iR) (and not 
in Q only) and has real coefficients. Therefore, Re (or 
R) affects here the character of the instability, i.e. 
change it from monotonic to oscillatory and vice 
versa, but cannot affect its onset. A similar result has 
been obtained by Pnueli and Zvirin [ 181. The dynamic 
marginal stability boundary is identical to the static 

one, Brelt = B3,, = Bd. Its shape, given by equations 
(23) coincides with the exact well-known form, e.g. 
Nield [16]. In this case 

y,rl = (n’+B2)3 

B’ 
; yo’l; 

(31) 
/I* = x/,/2 = 2.22144; y* = 21n4/4 = 657.511. 

5.2. Realistic boundary conditions 
Rigid lower and free top boundaries with a para- 

bolic velocity distribution; constant temperature and 
salinity on both boundaries and linear initial dis- 
tributions in between. These are written as 

h,=h,=co; D?‘,(z)=Df2(z)=l 

d(z) = :(22-z*) (32) 

T,=T,=O; w=O; Dw=O at z=O 

T, =T2=0; w=O; D*w=O at z=l. 

As can be seen by comparison with the previous exam- 
ple, the change of the conditions from free to rigid 
boundary leads to a much more complicated problem : 
the coefficients in equations (3) are not constant now, 
and it is impossible to obtain an exact closed form 
analytical solution, cf. Chandrasekhar [2]. Let us 
choose the trial functions as the simplest polynomials 
satisfying the boundary conditions 

0 = z(l-z); &J = z2(3-5z+2z2). (33) 

Inserting these into equations (A9) and (26) we obtain 

y = (19/Y4+432/!?2+4536)(82+10)/19/!12 

(19/?2+216)(/32+10) 
” = (19/I” +432/S* +4536) 

rl= 5071532; a7 aS’ = 0*/3* = 2.670; 

y*/n = 1140. (34) 

The ratio y*/q represents the critical Rayleigh number 
for the case of a single gradient : S2 = Ssn = y/q2 for 
S, = 0 and S, = SIC, = y/n, when S2 = 0, see equa- 
tions (24). Exact values of S,z, = 1100.657 and 
j* = 2.68 have been obtained by Chandrasekhar [2] 
(for the case of thermal stability without salinity 
effects). Hence the present method yields a good 
approximation-within 3% of the exact solution. 

It is noted that unlike the previous example, the 
static and dynamic marginal stability curves here 
are different. The former is obtained from equations 
(23) and (34) for various values of wave number, /I. 
The results are listed in Table 1, which also contains 
accurate values of points on the static stability lines, 
derived by general Galerkin and continuation 
methods in ref. [8]. As can be seen, the present first- 
order approximation yields quite good results; the 
maximum deviation in Table 1 is 7.2%. The agreement 
between the results becomes better when p increases 
and also for large Rayleigh numbers S, and S2. 

The dynamic marginal stability lines for various 
Reynolds numbers, Re, were obtained by the method 
outlined in Section 4. These lines must be derived 
numerically and a computer program was developed 
for it. The results presented here are the envelopes of 
the marginal stability families of curves with /I as a 
parameter, i.e. the stability boundaries for all possible 
wave numbers. Figure 4 includes a comparison of the 
present results with those of the accurate derivation 
of ref. [8], for Re = 10’. The first approximation 
underestimates the accurate solution ; the deviation 
between the two lines increases with S, and S2, and 
its maximum in the range of the figure is 9%. 

The stability boundary also includes envelope Bd of 
the dynamic marginal stability lines for all values of 
Re. The parabola Bd is obtained from equations (24) 
and (34). 

Figure 5 includes the stability chart in the Rayleigh 
number plane. In this example P, = 7, P, = 700 and 
fl = /I* = 2.670, see equations (34). The static (rest) 
stability margins are the straight lines GO and ON. 
The dynamic stability boundaries for the various 
indicated Reynolds numbers have been obtained 
by the numerical procedure mentioned above. The 
envelope, Bd, of these lines is the parabola GLAB 
shown in Fig. 5. 

Figure 6 is an expansion of region NAB of Fig. 5, 
illustrating the effects of the Reynolds number on the 
stability nature of the flow. Envelope Bd is the line 
OB’ in the figure, representing the dynamic stability 
margin : the region below it is stable for any Re. The 
static stability line is ON’ (for Re = 0), above which 
every state is unstable. The stability chart in Fig. 6 
also includes lines illustrating typical states of solar 
ponds. Salt water ponds are considered, where the 
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P,=7 
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S*.IO’S * 
3 

FIG. 4. The dynamic marginal stability line for Re = 10’ 
(comparison of the present first-order approximation and 

the accurate results of ref. [q). 

temperature difference is taken as AT, = 60°C. Obvi- 
ously, AT, should be the highest possible for 
maximum efficiency. It is well known that a bottom 
layer temperature of about 95°C can be reached. The 
lines in Fig. 6 represent ponds of various depths for 
two values of the salinity difference (100 and 300 kg 
mW3). These lines are linear, because the ratio S,/S, 
does not depend on d. 

As can be seen from the figure, when the depth, d, 
increases, the critical Reynolds number increases too. 
In the range of d between 0.8 and 2m, doubling the 
depth causes an increase of Re, by a factor of about 
3. Thus, if the same velocity is kept in the pond while 
the depth is increased, there is no danger of desta- 
bilizing the flow. Depth values below, say, 1 m, should 

1176 

Rr 
t 

P,=7 

P,=700 

be avoided because the pond would be too close to 
the marginal stability line. 

6. DISCUSSION 

This paper describes a technique for the con- 
struction of the static and dynamic stability chart of 
double diffusive shear flows, based on a first approxi- 
mation Galerkin method. 

As mentioned above, this relatively simple method 
is not generally accurate. Its limitations and advan- 
tages are discussed here and an outline is suggested 
for the proper utilization of the procedure and results. 

It should be emphasized that a first-order Galerkin 
method may lead, in some cases, to results which are 
not only inaccurate but utterly wrong. For example, 
the first-order approximation predicts that plane 
Poiseuille flow is always stable, while it is known, 
based on higher order analyses, that instabilities do 
exist, cf. refs. [6, lo]. Thus great care must be taken 
when a first-order Galerkin technique is attempted. 
The method can be used effectively for certain 
purposes and under several conditions ; it is 

recommended, however, to support the results by 
other, more accurate, means as explained below. 

The first approximation Galerkin method is shown 
below to be useful for the following main applications. 

(a) First approximation, as a preparation for more 
accurate calculations. 

(b) Parametric study of the stability behaviour of 
the flow, when it yields reasonably accurate results. 

(c) Derivation and evaluation of the general quali- 
tative form of the stability chart. 

As pointed out in refs. [6, 7, lo], the accurate solu- 
tion by a general Galerkin method involves high-order 
complex matrices for cases of non-self-adjoint oper- 
ators with complex variable coefficients. Thus the 
numerical determination of the eigenvalues is con- 

FIG. 5. Marginal stability boundaries for various values of Re in the Rayleigh number plane, obtained by 
a hrst approximation Galerkin method. 
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! 
-marginal stability lines, BRe 

2.5 Typical rolor pondsr 

ATz(kg/m’), ATt=600C 

100 -- 

2.0 300 --- 

FIG. 6. The stability chart in the Rayleigh number plane (expansion of region NAB in Fig. 5), including 
lines representing states of typical solar ponds. 

sidered a difficult task. Moreover, problems such as 
‘spurious’ eigenvalues may be encountered. On the 
other hand, for the derivation of the stability chart, 
only one eigenvalue is actually required-that with 
the largest real part. The approach developed in ref. 
[8] simplifies the analysis by using a combination of 
the methods of ‘vector iteration with shift’ and ‘con- 
tinuation’. The effectiveness of this approach strongly 
depends on the initial guess for the marginal stability 
curves. The first approximation method described 
above provides, indeed, a good initial guess. It is fur- 
ther noted that this method is analytical and does not 
require numerical computations to obtain the eigen- 
values. The marginal stability lines have been derived 
directly from the coefficients of the characteristic stab- 
ility equation. The calculations of the eigenvalues in 
ref. [8] have been performed very carefully in order to 
isolate a single one with the largest real part and 
determine it accurately on a marginal stability line. 
The continuation method enables, then, progressive 
‘drawing’ of the line by investigating the variation of 
the eigenvalue with respect to the system parameters. 

Even the simplified and efficient method of ref. [8] 
to derive the stability chart by a general Galerkin 
method is still quite complicated and expensive, i.e. 
it requires significant computer time and memory. 
Therefore, if a reasonably accurate derivation by a 
first approximation is available, such as the method 
presented here, a parametric study and an inves- 
tigation of various phenomena and effects can be per- 
formed much more conveniently. It is reminded, 
again, that the accuracy of the first approximation 
must be examined by spot-checking (at least). 

It has been shown here and in ref. [9] that for certain 

cases of boundary conditions the method yields the 
exact solutions, because the trial functions are the 
exact eigenfunctions of equations (3). Furthermore, if 
the operator of these equations is self-adjoint, there 
exists, then, a variational principle for the problem. 
The Gale&in procedure is identical to the Rayleigh- 
Ritz method, and the extremum properties of the 
eigenvalues can be utilized. For more complicated 
cases such as the realistic boundary conditions, the 
present method sometimes yields good approxi- 
mations, as has been shown by a comparison with the 
accurate derivation of ref. [8]. It can be deduced that 
the present method would lead to good approxi- 
mations when the parameters appearing in equations 
(3) are in the neighborhood of those leading to self- 
adjoint operators, and when the Reynolds number is 
small and the initial temperature and salinity dis- 
tributions are close to linear. 

The third application of the proposed method is the 
qualitative derivation and evaluation of the general 
properties of the stability chart. As pointed out above, 
an accurate derivation is quite complicated and 
expensive. The chart consists, generally, of various 
regions and numerous marginal lines of static and 
dynamic stability. Without preliminary information 
of at least several main regions of the chart, it would 
be extremely difficult to know what lines and zones to 
search and where (approximately) to start the pro- 
cedure of finding them. The first-order Galerkin 
method developed here provides the tool for such an 
initial general outline of the stability chart. 

An example for a peculiar stability phenomenon is 
the result of a flow which is stable for 2-D disturbances 
in the flow direction (transverse rolls) and per- 
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pendicular to it (longitudinal rolls), but unstable for 
certain oblique 3-D perturbations. A similar result has 
been obtained by ref. [12] for plane Poiseuille flow. 
This phenomenon is explained by the non-monotonic 
effect of the viscosity, and leads to the behaviour of 
two marginal stability lines (for 2-D disturbances) 
crossing at certain points in the chart. One of these 
lines is obviously a ‘dummy’. 

Another example is plane Quette flow, or semi- 
parabolic plane Poiseuille flow (rigid-free bound- 
aries), which are linearly stable for all Reynolds num- 
bers, Re, and wave number, /I. This situation cor- 
responds to the origin, S, = S2 = 0, of the Rayleigh 
number plane. Thus there exists a region surrounding 
this point where the shear stratified flow is also stable 
for all Re and 8. 

7. CONCLUSIONS 

A first-order Galerkin method has been developed 
for the stability study of double diffusive shear flows. 
The method can be used, in general, for a qualitative 
derivation and evaluation of the stability chart and as 
an initial guess for a more accurate solution. Com- 
parison to previous results obtained by a general 
Galerkin technique has shown that the approximation 
obtained by the present method is reasonable ; it was 
therefore used for a detailed analysis of the stability 
chart. 

The stability chart in the Rayleigh number plane 
S,-S2 was derived in this plane for various Reynolds 
numbers, including the rest state (Re = 0). The stab- 
ility regions for various Reynolds numbers, ST,,, and 
for all Re, ST,, have been obtained as well as the line 
dividing between them, &, which is the envelope of 
the crossing lines B,. This envelope is tangent to the 
monotonic and oscillatory static stability boundaries, 
to axes S, and S2 and to all the lines BRe. 

A domain in the parametric space has been dis- 
covered, where the flow is stable for 2-D transverse 
and longitudinal rolls, but unstable with respect to 
general 3-D disturbances. 
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APPENDIX: THE COEFFICIENTS AND PARAMETERS IN THE CHARACTERISTIC EQUATION (8) 
AND THE STABILITY CRITERIA 

The (3 x 3) matrices N and M in equation (7) are obtained after several integrations by parts as 

Njj = -[((DfIj)2+~20f>+h,,0f(l)+h,,0~(0)]-iRP,(rXJ~> 

N,g = -((DZ~)Z+2~Z(D~)2+~4~2)-iR t?[(D~)‘+/?z@]+$D’~ 
> 

N,, q N21 = 0; Nj> = (+S,DTj) ; N,, = (- 1)‘+1B2S~(gj~) 

Mjj = pj(ef) ; M33 =(@4)‘+B’+‘>; Mk,=M&kj k= 1,2,3; j= 1,2 

where 

(Al) 

(...)E O’...dz. 
s 
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The coefficients n, of the characteristic equation (8) are given by 

In order to construct the marginal stability lines, parameters bk, c, and L,, which appear in equations (9) and (IO), must be 
expressed as functions of the elements of matrices N and M. For this we define 

Bk = - Re (Nkl)/Mkk ; RDk = - Im (Nkk)/Mkk 

SjAj s (- l)‘+ ‘N,,N,xIM~~MJJ ; k= 1,2,3; j= I,2 
(A3) 

and from equations (A3), (A2) and (Al) 

b, = B,+B,+B3, Cl = R(L), +L)*+q 

b, =B,B,+BzBj+B3B,-R2(D,D2+D2D1+D3D,)-S,A,+S2Az 

~2 = R[B,(D,+Dg)fB*(D3+D1)+B3(D,+02)1 

b, =B,BzB3--R2(B,DZD,+B2D~D,+BsD,D2)-S,A,B2+SzA2B, 

cj =R(B,B~D~+~~B~D,+B~B,D*-R’D,D~D~-S,A,D~+S~A*D,). 

Finally, parameters L, are obtained from equations (A4) and (10) as 

L, =B,+B,+B,; LZ =b,KB,+BJ(B,+Bd(B,+B,) 

-A,S,(B,+B,)+A$~(B~fB,)]+R7[B,B~(D,-D~)Z 

+B~B~DI-D~~+B~B,(D~-D,)*I 

L, = L:L,-(2b,L,i-c2L$ 

L., =4b,[B,BlB3-A,S,B2+AZSZB,]+R2[B:(D2-D3)* 

+B:(D,-D,)2+B:(D,-DJ2-2B,BZ(D2-D3)(D3-D,) 

-2BzB,(D,-D,)(D,-D,)-2B,B,(D,--D,)(D2--Dd] 

Ls = -R{D,B~B~~~~-B~~R*(D~-D~)*]+D~B~B,[b~-Be 

+R2(D,-D,)Z]tD~B,B~[b:-B:+RZ(D,-DZ)Z]-S,A1[D2(b:-B:) 

-B,(D,B,+D~B~)Is.S~A~ID,(~:-B:)-B,(DZB~+D~B~)I}. 

G44) 

WI 

For the static case, with no initial flow in the undisturbed state, (R = 0), the parameters L2 and L4 are given by equations 
(12), with coethcients 

MB) = bl(B,+B2)(BB2+B3)(B3fB,); ~~~) =4btB,&B, 

L,(P) = b,A,@,+B,); M8) = VIA@,+&) 1 (A@ 

L,(P) = 4b,A,B,; Ml-9 = Q,AzB,. 

Coefficients E(B) which appear in equations (15) are obtained in the following manner. For identical temperature and 
salinity boundary conditions h,, = hUl = h,, h,, = hrl = hr (see equations (4)). Introducing these relations together with the 
choice of e,(z) = S,(z) = e(z) into equations (Al) and (A3), one obtains 

D, = DZ = (G(z)f?2(z)>/(f32(z)) 

D, = (ls[(D~)2+~Z~Z]+0.5~2D2J)/((D~)Zf~2~2). (A7) 

Substitution of equations (A7) into equations (A5) yields, after some manipulations, the following expressions of coefficients 
E(8) of equations (15) (see also equations (A4)) and the last of equations (15) 

Bl& 
E, = 26;-------, 

B,+Bz ’ 

E, = 16 
b;)B:B; 

B,(B,+B,)2; 

& = 4b$$ 
3 

4b;B,BZ 

Er = (0, -D#Bl(Bl CB,)’ 

(A8) 

Coefficients ‘I,, qz, y and y0 in equations (23) and (24) for the static stability boundaries in the plane S,-S2 are obtained 
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by introduction of equations (12) and (15) into equations (13) 

y. = t(82e2+@e)2)+h,eZ(1)+h1e2(0)l <B’4’+ P#d2) 
(6 W’~‘+WP#J)* + P*4)‘> 

1, = ~DQvxe~ww4~~; _i = 1,2. 
Note that y and y0 depend on /I but nj does not. 

DIAGRAMME DE STABILITE DES ECOULEMENTS PARALLELES 
CISAILLANTSAVEC MECANISMES DOUBLEMENT DIFFUSIFS-OBTENTION 

APPROCHEE PAR UNE METHODE DE GALERKIN DE PREMIER ORDRE 

R&mm&- La stabilite dune couche de fluide soumise a un ecoulement cisaillant horizontal quelconque est 
btudiee dans le cas de distributions verticales arbitraires de temperature et de salinite. L’analyse de stabilite 
lintaire est utilisee pour ttudier la stabilitt sous l’effet de perturbations tridimensionnelles. On utilise une 
mtthode de Galerkin pour d&river l’equation caracteristique ; les conditions de stabilitd sont obtenues ainsi 
que les courbes de stabiliti marginales. La methode est appliqube dans le cas dune distribution parabolique 
de vitesse et des profils lintaires de temperature et de salinite. Le diagramme de stabilitt dans le plan des 
nombres de Rayleigh contient differentes regions stables et instables qui dependent du nombre de Reynolds. 
Les resultats sont compares avec des r&hats anterieurs obtenus par une methode g&n&ale de Galerkin. 
On trouve une region ou l’ecoulement est stable vis-a-vis de perturbations transversales bidimensionnelles, 

mais instable pour des perturbations g&n&ales tridimensionnelles. 

DIE STABILITATSKARTE PARALLELER SCHERSTRGMUNGEN BE1 
DOPPELDIFFUSIVEN PROZESSEN-NAHERUNGSWEISE HERLEITUNG MIT 

EINER GALERKIN-METHODE 1. ORDNUNG 

Zusammenfaasung-Es wird die Stabilitlt einer unendlich ausgedehnten Fliissigkeitsschicht, die einer 
beliebigen horizontalen Scherstromung und einer behebigen vertikalen Temperatur- und Salzgehalts- 
verteilung unterworfen ist, betrachtet. Die lineare Stabilitltsanalyse wird verwendet, um die Stabilitlt 
unter dem EinfluB allgemeiner dreidimensionaler Stiirungen zu untersuchen. Urn die charakteristischen 
Gleichungen herzuleiten, wird ein Naherungsverfahren erster Ordnung nach Galerkin verwendet. Man 
erhiilt dann die Stabilitiitskriterien, und die Rand-Stabilitltskurven kiinnen ermittelt werden. Die 
Methode wird an einem Beispiel mit parabolischer Geschwindigkeitsverteilung und linearer Verteilung 
der Temperatur und des Salzgehalts angewandt. Es wurde herausgefunden, daB die Stabilitiits- 
kurve in der Rayleigh-Zahlen-Ebene abhlngig von der Reynolds-Z&l unterschiedlich stabile und 
instabile Regionen beinhaltet. Die hier ermittelten Ergebnisse werden mit friiheren Ergebnissen verglichen, 
welche mit einer allgemeinen Galerkin-Methode erhalten wurden. Es wurde ein Gebiet gefunden, in dem 
die Striimung fur zweidimensionale transversale Stiirungen stabil ist, jedoch instabil in Bezug auf allgemeine 

dreidimensionale Storungen. 

aHAl-PAMMA YCTOft’HIBOCTH HAPAJUIEJIbHbIX CJIBHI-OBbIX TE’4EHkift C 
YHETOM B3AkiMHOR flH@@Y3HH: HPMEJIkDKEHHbI~ PACHET METOAOM 

I-AJIEPKHHA HEPBOI-0 HOPJIAKA 

a-PaccMarpiieaercn yCTO&IHBOCTb 6ecKoHe~orocnoanwmtocranp~~E3B0~bHOM ropn- 
30IiTaJlbHOM CIIBIWOBOM TeSeHHH H llPOH3BOjlbHbIX BepTEKUIbHbIx paCIIPeAeJIe?IHKX TeMIIepaTypbl H 

coneconepsama. B o6meM cnynae TpexMepnbrx eost+iymemil ycrolweomb uCCnenyezCn B pamax 

nHHeLiioil rdoneim MCTOA raJIepKHHa nepeoro nopsma ~cnonb3oBa~ n.m nonygema xapaKTepacrH- 

'IeCKOrO ypaBHeHHK,3aTeM yCTaHOBneHblyCJIOBHS yCTOi+4SiBOCTA H 06nacraee CylIleCTBOBruIHIi.~pHMe- 
HemHe MeTOm bmpKHHa paccMoTpeH0 Ha npHMepe c napa6onmeCm pampeneneHHeh4 crop0m~ H 
JlHHetiHLalMH p~lI~JWIeHaahfH TeMnepaTypbl H COJIeconepuuIEK.&WpaMMa yCTOi+IHBOCTE B ILWnZ- 

KO~TH q~cen P3nen ~~mo~am paanwnbre ycro&nrsbre H Heycroitwisble o6namm, 0npenemeMbIe 

¶HCJlOM Pe~HO~n~.Pe3ynbTaTblHa~O~e~pa6oTbl~BHH~TcKC~HHbl~~On~eHHblMH paHee 

06lUHM MeTOLlOM rZUXpKHHa. Hailrrena 06naCTb, B KOTOpOit IIOTOK yCTOii¶EB B CJly¶ae IlOllCPeqHblX 

BO3MylIleHEi,HO HeyCTOti¶HB KTpeXMepHbU.4 BO3MJWeHHnM. 

(A9) 


